Tetrahedron Letters,Vo1.26,No.20,pp 2463-2466,1985 0040-4039/85 \$3.00 + .OO ©1985 Pergamon Press Ltd.

SYNTHESIS OF X-BUTYROLACTONES VIA THE ENE REACTION OF ETHYL d-CHLORO-d-PHENYLTHIOACETATE AND l-ALKENES

Kin-ya Akiba", Yasuhito Takasu, and Makoto Wada Department of Chemistry, Faculty of Science, Hiroshima University Higashisenda-machi, Hiroshima 730, Japan

Abstract: Ethyl α -chloro- α -phenylthioacetate reacted with 1-alkenes in CH₂Cl₂ at -78--0 C in the presence of SnCl₄ to afford the ene reaction products (80–90%), which were readily converted into the corresponding $\mathit{I}-$ butyrolactones.

In our previous report we described one-pot synthesis of $\check{\sigma}$ -butyrolactones and 4.5 -dihydrofurans from α -chloro- α -ketosulfides and branched olefins in the presnce of $SnCl₄,¹$ where tertiary carbocations are generated in situ. During these experiments, we encountered that ene reaction took place as a side reaction. In this communication we wish to report that ethyl α -chloro- α -phenylthioacetate (1) reacts with 1-alkenes (2) to afford solely an ene reaction product (3) , which is readily converted into the corresponding \mathbf{J} -butyrolactone. The skeleton of \mathbf{Y} -butyrolactone is widely found as a moiety in many naturally occurring compounds, and a number of methods for the synthesis of these compounds have been reported.²⁾

Ethyl d -chloro- d -phenylthioacetate (1) was prepared from the corresponding sulfide by treating with N-chlorosuccinimide.³⁾ Tin tetrachloride was added to a mixture of 1 and 2 in CH_0Cl_0 under argon atmosphere at -78° C and the reaction mixture was allowed to warm to room temperature to give 3 as shown in Scheme I and the results of these reactions are summarized in the Table.⁴⁾

Scheme I ϵ , λ Cl **Ph5/\GOEt ...** SnCl_2 PhS \curvearrowleft $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ **WRZ** $\mathbb{P}_{\mathbb{P}_{\mathbb{Q}}}$ $\mathbb{P}_{\mathbb{P}_{\mathbb{Q}}}$ $\mathbb{P}_{\mathbb{P}_{\mathbb{Q}}}$ $\mathbb{P}_{\mathbb{P}_{\mathbb{Q}}}$ $\mathbb{P}_{\mathbb{Q}}$ $\mathbb{P}_{\mathbb{Q}}$ $\mathbb{P}_{\mathbb{Q}}$ $\mathbb{P}_{\mathbb{Q}}$ *Lus**Luse* **Ph Sweet Ph Sweet Ph Sweet Ph \ 0 / 0 I** , **PhS** POEt \leq

	1-Olefin (equiv.)	Equiv. of $SnCl4$	Yield of 3^{b} (%)
a	$CH_2:CH(CH_2)_{3}CH_3$ (1)	1	51
	$CH_2:CH(CH_2)_{3}CH_3$ (2)	$\mathbf{1}$	72
	$CH_2:CH(CH_2)_{3}CH_3$ (2)	\overline{a}	88
b	$CH_2:CH(CH_2)_{2}CH_3$ (2)	$\boldsymbol{2}$	81
c	$CH_2:CH(CH_2)_7CH_3$ (2)	2	92
d	$CH_2:CH(CH_2)_{10}CH_3$ (2)	2	92
e	$CH_2:CH(CH_2)_{12}CH_3$ (2)	$\mathbf{2}$	80

Table Ene Reaction of Ethyl d -Chloro- d -phenylthioacetate (1) and 1-Olefins $(2)^{a}$

- a) A standard procedure is as follows : to a mixture of 2.0 mmol of $\frac{1}{\lambda}$ and 4.0 mmol of 2 in 5 ml of CH_2Cl_2 was added 4.0 mmol of $SnCl_A$ at -78[°]C under argon. The mixture was allowed to warm to room temperature with stirring. The reaction mixture was treated with water followed by extraction with CH_2Cl_2 . After removal of CH_2Cl_2 , the crude product was purified by flash column chromatography on silica gel (Merck Art 9385, hexane:ethyl acetate=19:1)
- b) Satisfactory IR, $^{\mathrm{1}}$ H NMR, MS and elemental analyses data were obtained for these compounds. Data for selected $3a$: IR (neat) 2950, 1725, 1430, 1140, 1015, 960, 735, and 680 cm⁻¹; ¹H NMR (CDC1₃) δ 0.86 (t, 3H, J=6.6Hz), 1.14 (t, 3H, J=7.3Hz), 1.35 (sex, 2H, J=6.6Hz), 1.75-2.15 (m, 2H), 2.30-2.80 (m, 2H), 3.66 (t, lH, J=7.3Hz), 4.08 (q, 2H, $J=7.3Hz$), 5.20-5.70(m, 2H), and 7.00-7.63 (m, 5H); MS (m/e) 278 (M⁺, 100%), 196 (50), 169 (80), and 123 (90); Calcd for $C_{16}H_{22}SO_2$: C, 69.03 H, 7.97; Found: C, 68.95; H, 8.14. The IR spectrum revealed an absorption band at 960 cm⁻¹ due to E configuration of the double bond, and the detailed $^{\text{1}}$ H NMR analysis showed that $\mathfrak z$ a was a mixture of E and Z isomers and E isomer was major (the coupling constant of the vinyl proton : $15Hz$). The ratio of E to Z isomer of $2a$ was about 85:15 by HPLC analysis.

As is evident from the Table, use of two equivalents of $SnCl₄$ and 1-olefins gave good results and χ -butyrolactones were not detected at all, which should be produced by intramolecular attack of the secondary carbocation to the oxygen of a carbonyl group. $^{\mathrm{1)}}$

The ene reaction product (2) could readily be converted into *r***-butyrolactone** $(\underline{5})^{5}$ by hydrolysis with KOH in aq MeOH followed by phenylselenolactonization of the resulted carboxylic acids $\frac{4}{9}$ using phenylselenyl chloride and triethylamine in CH_2Cl_2 .⁷⁾ The final stage of the synthesis of ζ -butyrolactones (ζ) is elimination of the selenyl and the sulfenyl groups as shown in Scheme II. $^{\text{8)}}$ This was carried out by the well known procedures : a) oxidation with H_2O_2 followed by fragmentation of the selenoxides at room temperature,⁷⁾ b) oxidation with NaIO₄ and successive pyrolysis of the resulting sulfoxides. 9)

Scheme II

Finally, the present synthesis has the following advantages : a) the starting material can readily be synthesized, b) the reagents are readily available, c) ene reaction with l-alkenes proceeds in high yields, d) ene reaction products are converted into the corresponding ζ -butyrolactones under simple procedures.

Acknowledgement : We are grateful for partial support of this research to Grant-in-Aid for Scientific Research (No. 57218017 and 58540317) administered by Ministry of Education, Science and Culture of Japanese Government.

References and Notes

- 1 . a) M. Wada, T. Shigehisa, H. Kitani, and K. Akiba, <u>Tetrahedron Lett., 24</u> 1715 (1983). b) M. Wada, T. Shigehisa, and K. Akiba, ibid., 24 , 1711 (1983).
- 2. a) Y. S. Rao, <u>Chem, Rev</u>., <u>64</u>, 353 (1964). b) K. Tanaka, K. Ootake, K. Imai, N. Tanaka, and A. Kaji, Chem, Lett., 633 (1983), and references cited therein.
- 3. H. Bohme and W. Krack, Ann. Chem., 51 (1977).
- 4. For the similar ene reaction, see : Y. Tamura, H.-D. Choi, H. Maeda, and H. Ishibashi, Tetrahedron Lett., 22, 1343 (1981); Y. Tamura and H. Ishibashi, Yuki Gosei Kagaku Kyokai Shi, 40, 658 (1982).
- 5. Satisfactory IR, $\frac{1}{1}$ H NMR, and MS data were obtained for these compounds, however, $^1_{\rm H}$ NMR was complicated because the lactones (5) were a mixture of diastereomers. Selected 1 H NMR signals of 5d : δ 2.90-3.30 (m, 1H, $PhSe-CH-$), $3.80-4.08$ (m, $1H$, $PhS-CH-$), and $4.20-4.64$ (m, $1H$, $-O-CH-C-$ SePh).
- 6. These compounds were identified by IR, $^{\mathrm{1}}$ H NMR, MS, and elemental analyses data. Selected ¹H NMR signals of $4a : 63.53$ (t, 1H, J=7.2Hz, PhS-CH-), 5.07-5.87 (m, ZH, -CH=CH-), and 12.10 (bs, lH, -COOH).
- 7. K. C. Nicolaou and Z. Lysenko, <u>J. Am. Chem. Soc</u>., 99, 3185 (1977).
- 8. Satisfactory IR, 1_H NMR, and MS data were obtained for 6 and 7 . The 9. B. M. Trost, T. N. Salzmann, <u>J. Am. Chem. Soc., 95</u>, 6840 (1973). lactones (\mathcal{G}) are a mixture of cis and trans isomers while the geometry of the exocyclic double bond is E configuration based on the coupling constant of the vinyl proton. Selected $^{\mathbf{1}}$ H NMR signals of trans 6d :81.75-2.16 (m, 3H, $-C=C-C_{\frac{H}{2}}$ and PhS-C-CH-), 2.73 (ddd, 1H, J=10.5, 9.0, 7.0Hz, PhS-C-CH-), 3.94 (dd, 1H, J=10.5, 8.8Hz, PhS-CH-), 4.74 (ddd, 1H, J=9.0, 6.5, 6.5Hz, $-O-CH-C-C-$), 5.32 (ddt, 1H, $J=16$, 6.5, 1.5Hz, $-O-C-CH=C-$), and 5.79 (dt, 1H, J=16. 6.0Hz, -O-C-C=CH-). Selected 1_H NMR signals of cis $6d : \{2.36 \text{ (dd, 2H, J=6.7, 6.5Hz, PhS-C-CH}_2-\text{)}, 3.88 \text{ (t, 1H, J=6.5Hz,$ PhS-CH-), 4.80 (dt, 1H, $J=6.7$, $6.5Hz$, $-0-CH-C=C-$), 5.38 (dd, 1H, $J=15$, 6.5Hz, -O-C-CH=C-), and 5.78 (dt, 1H, J=15, 6.0Hz, -O-C-C=CH-). Selected ¹H NMR signals of 7d : δ 5.10-5.50 (m, 2H, -0-C-C=CH- and -0 -CH-C=C-), 5.90 (dd, 1H, J=15, 6.0Hz, -0 -C-CH=C-), 6.09 (dd, 1H, ${\tt J=6.0,~1.7Hz}$, ${\tt 0=C-C\underline{H} =C-}$, and ${\tt 7.38}$ (dd, ${\tt 1H,~J=6.0,~1.4Hz}$, ${\tt 0=C-C=C\underline{H}-R}$
	- (Received in Japan 5 March 1985)

2466